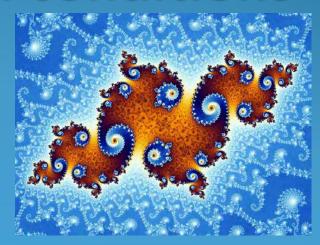
Health Opportunity Index Methodology

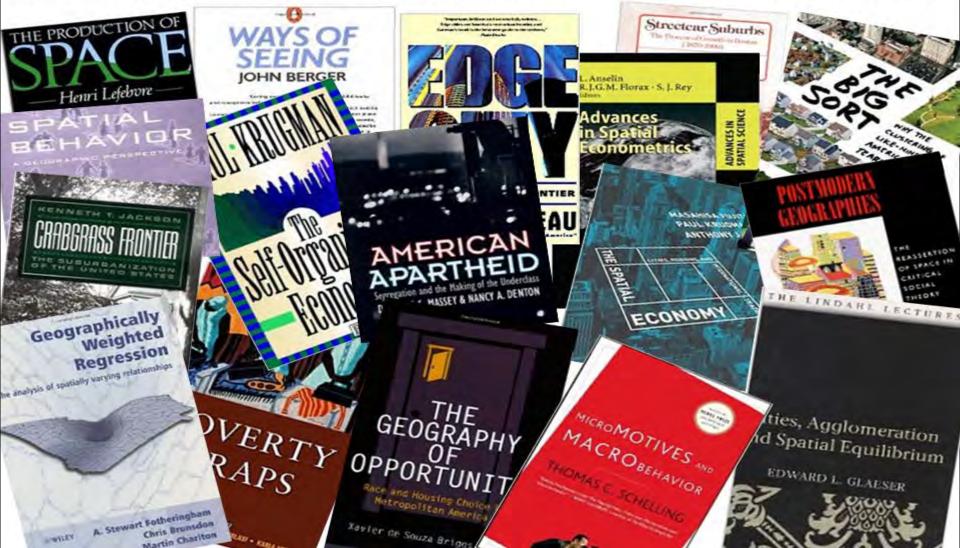
The Health Opportunity Index; Version 2 (2015)—A Methodological, Analytical and Policy Perspective

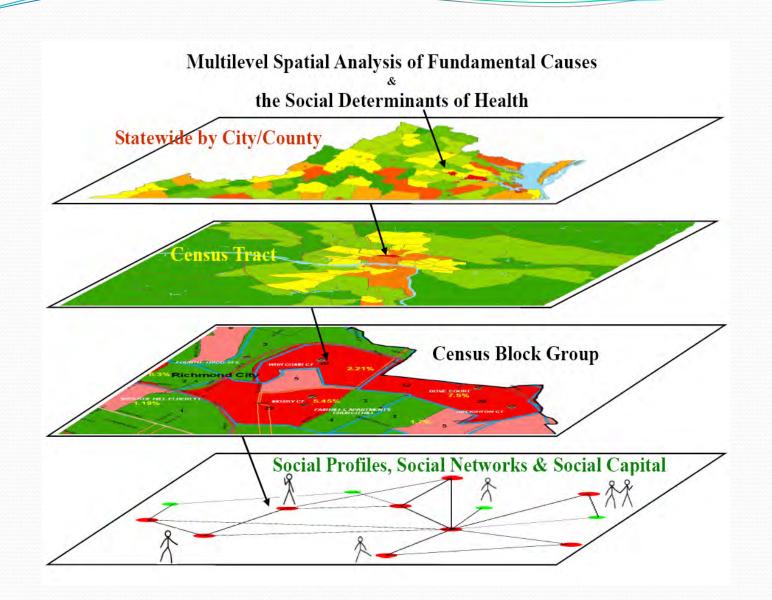
Rexford Anson-Dwamena, MPH Social Epidemiologist & GIS Analyst

Justin Crow, MPA
Designation & GIS Manager


Anna Riggan, MPH Research Analyst,

Wednesday, 16th, 2015



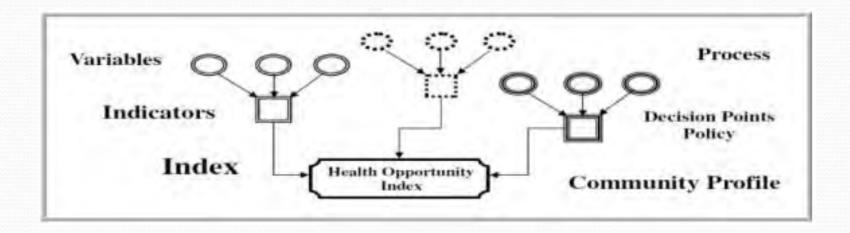

Things Change but....

...systems remain highly sensitive to initial conditions

...it is space not time that hides consequences from us.

The Methodology

Process Variables (Actionable)


Structure

30+ Variables

13 Indicators

4 Clusters

1 Health Opportunity Index

Affordability Index

• The affordability index is developed to measure the proportion of income spent on housing and transportation. The index of affordability is calculated by combining housing and transportation costs in a neighborhood and dividing that number by income.

Affordability Index = <u>Housing Cost + Transportation Cost</u> Total Income

Income Inequality (GINI) Index

- the GINI coefficient (also known as the index of income concentration).
- Measures inequality of income.
- Measures how homogeneous or diversity of actual earned income by neighborhood (0 is homogeneous and 10 means more diversity in income earning positions.

(1)
$$GINI = \frac{1}{\mu N (N-1)} \sum_{i>j} \sum_{j} \left| y_i - y_j \right|$$

Where,

GINI is the Gini index:

μ is the mean of the variable (income, e.g.);

N is the total number of observations;

For income Gini, y_i and y_j are dollar values of income of individuals;

Townsend Dep. Index *

- Townsend deprivation index is a measure of material deprivation. According to Townsend, "Material deprivation entails the lack of goods, services, resources, amenities and physical environment which are customary, or at least widely approved in the society under consideration.
- 1. Unemployment % of economically active residents aged 16-59/64 who are unemployed.
- 2. Car ownership % of private households who do not posses a car.
- 3. Home ownership % of private households not owner occupied.
- 4. Overcrowding % of private households with more than one person per room.

^{*} The four variables were combined into one indicator using principal component analysis (using the natural log of the variables)

Job Participation Index

• Job Participation Rate is the percentage of individuals 16-64 years of age in the active labor force. The job participation rate is often used by economics as an indicator for economic development and growth.

Job Participation rate = <u>Civilian Employed + Civilian Unemployed</u> Civilian Population (16-64 yrs)

Employment Access Index

- Poor job access leads to difficulties in job search or job retention and, consequently, to poverty and socioeconomic disadvantages
- Employment accessibility index: you may have a workforce but how accessible are they to the potential jobs --- how far are you (distance) from a potential job. In other words, the index is based on jobs and distance decay function
- Ownership of a vehicle plays a function

$$A_i = \sum_{j=1}^n rac{J_j \ d_{ij}^{-eta}}{V_j}$$
, where $V_j = \sum_{k=1}^m W_k d_{kj}^{-eta}$

A: is the job accessibility at location i,

 J_j is the number of jobs in location j,

 d_{ij} is now the travel time between them,

 β is the friction coefficient and n is the total number of job locations.

 V_i is measured by this job location's proximity to all workers

Education Index

- The majority of the empirical literature uses average years of education as a proxy of the human capital stock
- higher level of human capital stock leads to faster technological development and ultimately higher growth rates
- Preschool through doctorate (this index is weighted based upon how far you have advanced in education)
- Higher the number the higher average number of schooling in the area

The average years of schooling (AYS) can be calculated as follows.

$$\mu = AYS = \sum_{i=1}^{n} p_i y_i$$

 μ is the average years of schooling for the concerned population; p_i and p_j stand for the proportions of population with certain levels of schooling; y_i and y_j are the years of schooling at different education attainment levels;

Years of Schooling Assigned for Data Beginning in 1992 ⁶

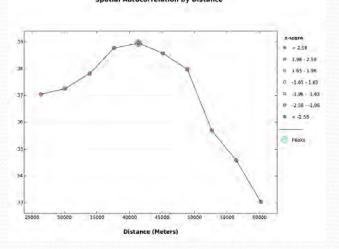
Educational Attainment Level	Years of Schooling, 3
Elementary School	-
None	0
1 to 4 years	2.5
5 to 6 years	5.5
7 to 8 years	7.5
High School	
9 th Grade	9
10 th Grade	10
11 th Grade	11
Graduate	12
College	
Some College, No Degree	13
Associate's Degree, Occupational	14
Associate's Degree, Academic	14
Bachelor's Degree	16
Master's Degree	18
Professional Degree	19
Doctoral Degree	20

Population Churning Index

• Population churning rates relate the combined inflow and outflow for an area to the resident population. The rates can provide a useful measure of the potential disruption to local services caused by migration into and out of the Census tract.

Population Churning Rate = <u>In Migration + out Migration</u> Total population

Population-Weighted Density Index


- Weighted density is to capture the density at which the average person lives (aka Dysmetric).
- It is necessary to differential between urban and rural in the model

	FIPS	СТ	POP2013	SQMI	POP13_SQMI	BG_PopWt	BG_PopWtedSQIM
ľ	510010901001	51001090100	901	3.75	240.3	0.311333794	74.81351071
ľ	510010901002	51001090100	790	0.75	1053.3	0.272978576	287.5283345
ľ	510010901003	51001090100	599	1.11	539.6	0.206979959	111.6863856
ľ	510010901004	51001090100	604	1.77	341.2	0.208707671	71.21105736
		Std	2894	7.38		PopWeighted	545.2

Std Pop-Density - 392.1 per SQMI

Segregation Index (Spatial Dissimilarity)

• Calculates a segregation or dissimilarity index that measures how different the population composition of a subarea (CT) is from the population composition of the State as a whole

Spatial Dissimilarity Index (SD)

$$SD = (1/2)(\sum_{j=1}^{n} \sum_{j=1}^{m} |CN_{ij} - CE_{ij}| / \sum_{j=1}^{m} CN \times CP_{j} (1 - CP_{j})$$
 with

$$CE_{ij} = (CN_{i.} - CN_{.j})/CN$$
 and $CN_{ij} = \sum_{k=1}^{n} d(N_{kj})$

 CN_{ij} : Composite population count of ethnic group j in spatial unit i

d() : Function defining surrounding spatial units i and k

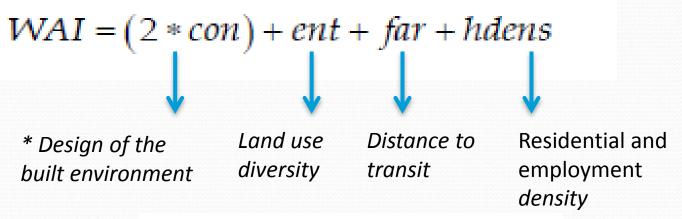
CN_i: Total composite population count in spatial unit i
 CN_i: Total composite population count of ethnic group j

CN : Total population in the city

 CP_i : Proportion of population in ethnic group j

Μ

Food Accessibility Index

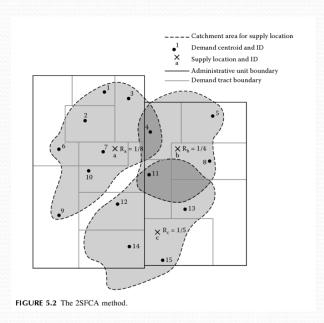

• Limited access to supermarkets, supercenters, grocery stores, or other sources of healthy and affordable food may make it harder for some Americans to eat a healthy diet

Low access was measured as living far from a supermarket, where 1 mile was used in urban areas and 10 miles was used in rural areas to demarcate those who are far from a supermarket.

The index was calculated based on the share (proportion of the target population) of the population that fit the USDA criteria rather than using the binary indicator.

Walkability Index (4Ds)

 Methodology was adopted from International Physical Activity and the Environment Network (IPEN)



- The 4Ds include concepts such as:
- Density Residential and employment
 - Indicator: Total activity units per acre of land
 - Measures the concentration of activity types within a walkable area
- Diversity Land use and destinations
 - Indicator: Range of land uses by census tract
 - Measures the mix of activities available within a walkable area
- Design Built environment and safety features
 - Indicator: Number of street crossings by census tract
 - Measures the degree of connectivity to support safe pedestrian travel
- Distance Transit accessibility
 - Indicator: Aggregate frequency of transit service per square mile
 - Measures level of accessibility for pedestrians to reach a transit stop

Variable was weighted twice

Access to Care (2SFCA)

- It first assesses "physician availability" at the physicians' (supply) locations as the ratio of physicians to their surrounding population (i.e., within a threshold travel time from the physicians)
- It sums up the ratios (i.e., physician availability derived in the first step) around (i.e., within the same threshold travel time from) each residential (demand) location. Based on Population-weighted centroid

% of Healthcare Uninsured Population was also combined with the FTEs to form the indicator

Environmental Quality Index (EPA) *

• National-Scale Air Toxics Assessment (NATA) provides estimates of the risk of cancer and other serious health effects from breathing (inhaling) air toxics in order to inform both national and more localized efforts to identify and prioritize air toxics, emission source types and locations which are of greatest potential concern in terms of contributing to population risk

Indicator	Details
Neurological Risk	provides the estimated neurological risk (hazard quotient) for each census tract, compiled by sector and contributing chemical.
Cancer Risk	The probability of contracting cancer over the course of a lifetime
Respiration Risk	Air toxics respiratory hazard index
On-road Pollution	Vehicles found on roads and highways (e.g., cars, trucks, buses).
Non-road Pollution	Mobile sources not found on roads and highways (e.g., airplanes, trains, lawn mowers, construction vehicles, farm machinery)
Non-Point Pollution	NPS pollution is caused by rainfall or snowmelt moving over and through the ground. As the runoff moves, it picks up and carries away natural and human-made pollutants, finally depositing them into lakes, rivers, wetlands, coastal waters and ground waters

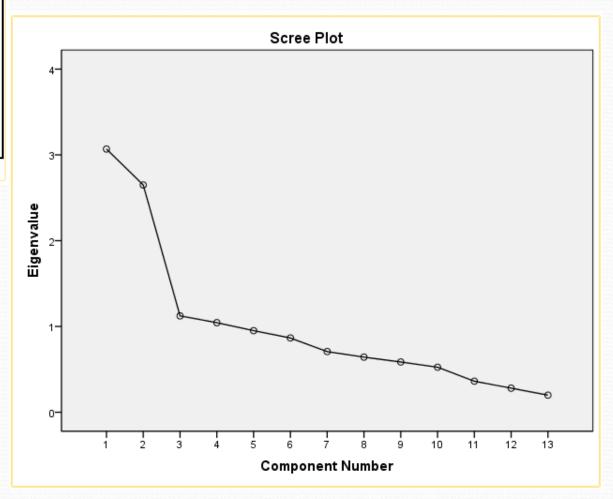
^{*} The six databases were transformed into one indicator using principal component analysis

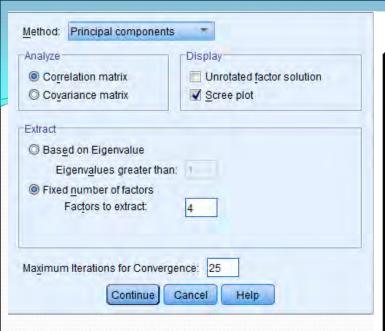
Data Reduction Technique

Reducing the Dimensions of the Data

Correlation Matrix

		HealthCare Access	Employment Access	Affordability Index	AirQualityInde x	PopChurning	AverageYrsof Schooling	FoodAccess	Income InqualityGINI	Job Participation	Pop_Weighte dDensity	Spatial Segragation	Townsend Index	Walkability Index	
Correlation	HealthCareAccess	1.000	.207	.116	230	056	.179	081	.060	.221	.124	013	.008	.194	
	EmploymentAccess	.207	1.000	.191	112	108	.209	076	.334	.514	.199	.004	.128	.305	
	AffordabilityIndex	.116	.191	1.000	.103	.206	.587	261	.352	.343	.089	.056	.600	.076	
	AirQualityIndex	230	112	.103	1.000	.265	122	074	.224	132	285	.041	.328	409	
	PopChurning	056	108	.206	.265	1.000	119	119	.126	026	358	.002	.368	391	
	AverageYrsofSchooling	.179	.209	.587	122	119	1.000	216	.128	.494	.245	.026	.318	.314	
	FoodAccess	081	076	261	074	119	216	1.000	114	152	032	042	183	049	
	IncomeInqualityGINI	.060	.334	.352	.224	.126	.128	114	1.000	.384	.027	.058	.398	020	
	JobParticipation	.221	.514	.343	132	026	.494	152	.384	1.000	.301	.046	.021	.338	
	Pop_WeightedDensity	.124	.199	.089	285	358	.245	032	.027	.301	1.000	.041	251	.604	
	SpatialSegragation	013	.004	.056	.041	.002	.026	042	.058	.046	.041	1.000	.042	.001	
	TownsendIndex	.008	.128	.600	.328	.368	.318	183	.398	.021	251	.042	1.000	250	
	WalkabilityIndex	.194	.305	.076	409	391	.314	049	020	.338	.604	.001	250	1.000	


KMO and Bartlett's Test


Kaiser-Meyer-Olkin Me	.689	
Bartlett's Test of Sphericity	Approx. Chi-Square	7171.823
	df Sig	78
	Sig.	.000

Total Variance Explained

		Initial Eigenvalues					
Component	Total	% of Variance	Cumulative %				
1	3.068	23.599	23.599				
2	2.649	20.378	43.977				
3	1.123	8.638	52.615				
4	1.044	8.032	60.647				
5	.951	7.313	67.960				
6	.865	6.657	74.617				
7	.707	5.437	80.054				
8	.642	4.939	84.993				
9	.586	4.505	89.499				
10	.524	4.034	93.533				
11	.362	2.781	96.313				
12	.280	2.156	98.469				
13	.199	1.531	100.000				

Extraction Method: Principal Component Analysis.

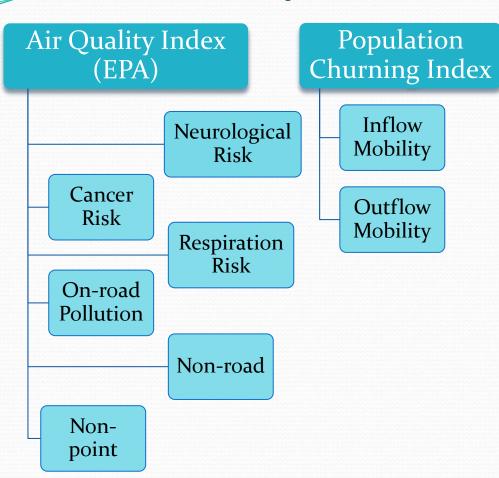
Rotated Component Matrix^a

		Comp	onent	
	1	2	3	4
WalkabilityIndex	.791	.142	.192	093
Pop_WeightedDensity	.747	.122	.175	.088
PopChurning	667	.191	.018	071
AirQualityIndex	601	.029	.114	.404
AffordabilityIndex	117	.822	.273	.010
AverageYrsofSchooling	.297	.774	.170	086
TownsendIndex	545	.599	.235	.061
FoodAccess	.021	554	.040	008
EmploymentAccess	.191	.014	.785	161
IncomeInqualityGINI	251	.142	.770	.148
JobParticipation	.304	.292	.686	105
SpatialSegragation	.142	.112	.057	.734
HealthCareAccess	.174	.164	.196	579

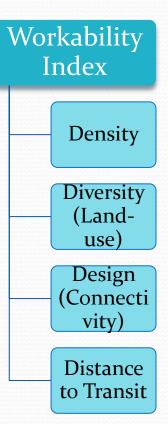
Total Variance Explained

			tai variance Expi	unica		
		Initial Eigenvalu	ies	Rotation	Sums of Square	d Loadings
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	3.068	23.599	23.599	2.634	20.261	20.261
2	2.649	20.378	43.977	2.158	16.603	36.864
3	1.123	8.638	52.615	1.963	15.102	51.966
4	1.044	8.032	60.647	1.129	8.681	60.647
5	.951	7.313	67.960			
6	.865	6.657	74.617			
7	.707	5.437	80.054			
8	.642	4.939	84.993			
9	.586	4.505	89.499			
10	.524	4.034	93.533			
11	.362	2.781	96.313			
12	.280	2.156	98.469			
13	.199	1.531	100.000			

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization.


Extraction Method: Principal Component Analysis.

Rotated Component Matrix^a


		Comp	onent	
	1	2	3	4
WalkabilityIndex	.791			
Pop_WeightedDensity	.747			
PopChurning	667			
AirQualityIndex	601			.404
AffordabilityIndex		.822		
AverageYrsofSchooling		.774		
TownsendIndex	545	.599		
FoodAccess		554		
EmploymentAccess			.785	
IncomeInqualityGINI			.770	
JobParticipation	.304		.686	
SpatialSegragation				.734
HealthCareAccess				579

Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.

Community Environmental Profile

Population-Weighted Density

Consumer Opportunity Profile

Affordability Index

Housing Cost

Transportatio n Costs

Average Income

Education Index

Ave. Years of Schooling

Food Accessibility Index

> % Low Income

% Low Access to Major Grocery Store

Distance to Grocery
Store

Material Deprivation Index

> Unemploymen t

Autoless Homes

Home Ownership

Overcrowding

Economic Opportunity Profile

Employment Access Index

Number of Jobs

Distance to Jobs

Income Inequality
Index

GINI Coefficient

Job Participation Index

% of Working Age Population in the Labor Force

Wellness Disparity Profile

Access to Care Segregation Index Index % Uninsured Race/Ethnicity **Primary Care** Physician FTEs **Population** within 30 miles Spatial Influence Weighting

Health Opportunity Index

Community Environmental Profile Consumer Opportunity Profile

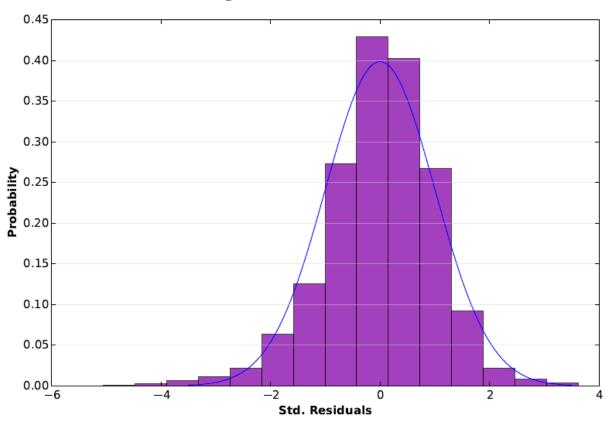
Economic Opportunity Profile

Wellness Disparity Profile

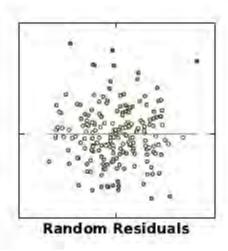
The 13 Original Indices

HOI Spatial Modeling (Analytical)

Place Matters

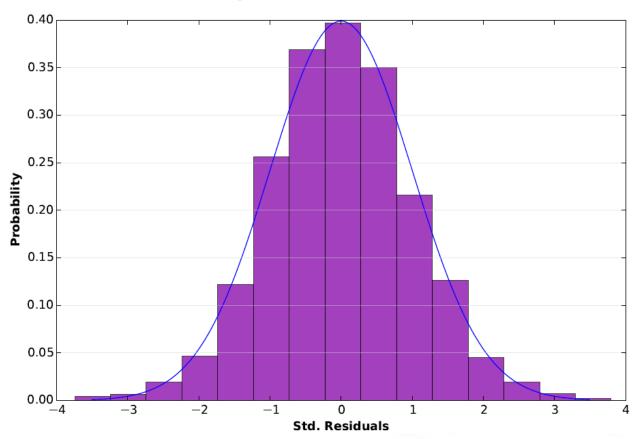

Summary of OLS Results - Model Variables

Variable	Coefficient [a]	StdError	t-Statistic	Probability [b]	Robust_SE	Robust_t	Robust_Pr [b]	VIF [c]
Intercept	34.580391	0.892283	38.754946	0.000000*	1.029163	33.600506	0.000000*	
ENVIRONMEN	3.368709	1.227647	2.744038	0.006128*	1.523337	2.211401	0.027115*	1.002880
OPPORTUNIT	33.515151	0.826917	40.530226	0.000000*	0.847554	39.543388	0.000000*	1.007598
ECONOMIC_P	27.932742	1.859343	15.022906	0.000000*	2.421745	11.534136	0.000000*	1.014627
WELLNESS_P	0.282575	0.858888	0.329001	0.742205	0.867857	0.325601	0.744775	1.011853

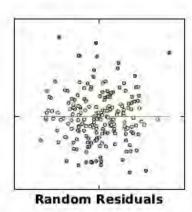

OLS Diagnostics

Input Features:	Epi_Seminar	Dependent Variable:	DFLE
Number of Observations:	1839	Akaike's Information Criterion (AICc) [d]:	10808.431632
Multiple R-Squared [d]:	0.517291	Adjusted R-Squared [d]:	0.516238
Joint F-Statistic [e]:	491.347488	Prob(>F), (4,1834) degrees of freedom:	0.000000*
Joint Wald Statistic [e]:	1701.638771	Prob(>chi-squared), (4) degrees of freedom:	0.000000*
Koenker (BP) Statistic [f]:	54.124483	Prob(>chi-squared), (4) degrees of freedom:	0.000000*
Jarque-Bera Statistic [g]:	235.963270	Prob(>chi-squared), (2) degrees of freedom:	0.000000*

This is a graph of residuals (model over and under predictions) in relation to predicted dependent variable values. For a properly specified model, this scatterplot will have little structure, and look random (see graph on the right). If there is a structure to this plot, the type of structure may be a valuable clue to help you figure out what's going on.

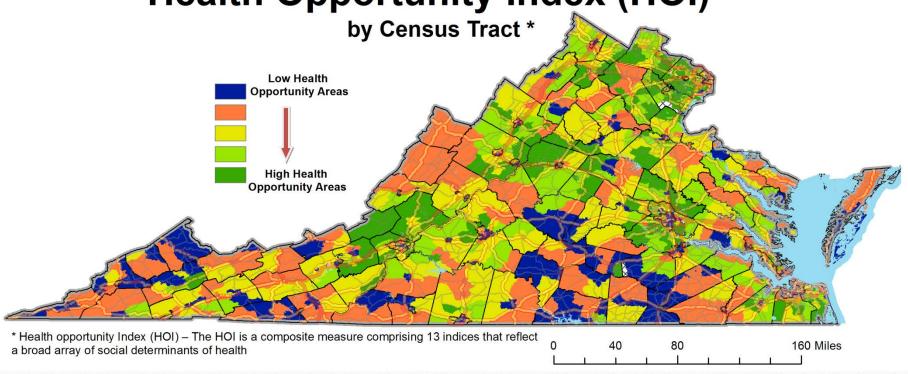

Summary of OLS Results - Model Variables

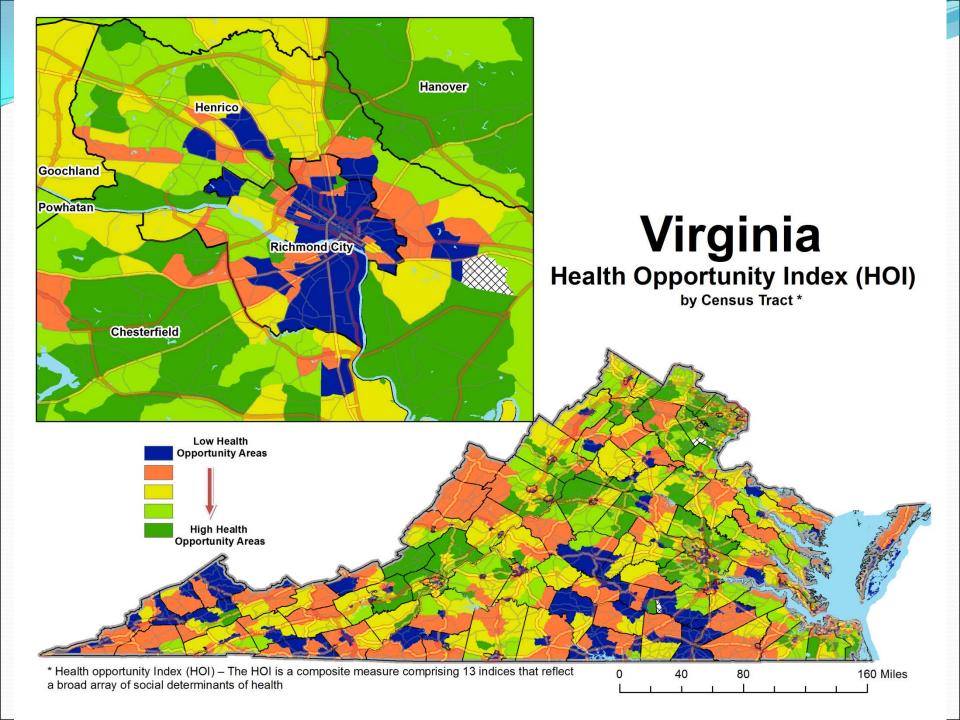
Variable	Coefficient [a]	StdError	t-Statistic	Probability [b]	Robust_SE	Robust_t	Robust_Pr [b]
Intercept	50.494325	0.666501	75.760321	0.000000*	0.803969	62.806298	0.000000*
MAIN_HOI_S	34.218107	1.542373	22.185368	0.000000*	1.795923	19.053210	0.000000*


OLS Diagnostics

Input Features:	Epi_Seminar	Dependent Variable:	DFLE
Number of Observations:	1839	Akaike's Information Criterion (AICc) [d]:	11705.263538
Multiple R-Squared [d]:	0.211314	Adjusted R-Squared [d]:	0.210885
Joint F-Statistic [e]:	492.190539	Prob(>F), (1,1837) degrees of freedom:	0.000000*
Joint Wald Statistic [e]:	363.024821	Prob(>chi-squared), (1) degrees of freedom:	0.000000*
Koenker (BP) Statistic [f]:	62.727166	Prob(>chi-squared), (1) degrees of freedom:	0.000000*
Jarque-Bera Statistic [g]:	12.469836	Prob(>chi-squared), (2) degrees of freedom:	0.001960*

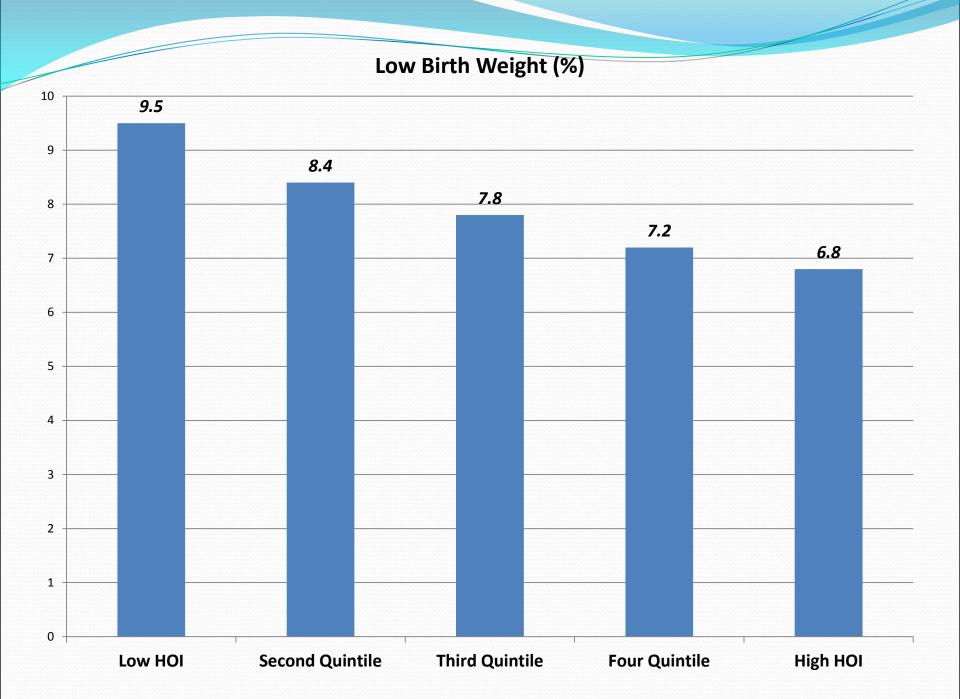
This is a graph of residuals (model over and under predictions) in relation to predicted dependent variable values. For a properly specified model, this scatterplot will have little structure, and look random (see graph on the right). If there is a structure to this plot, the type of structure may be a valuable clue to help you figure out what's going on.

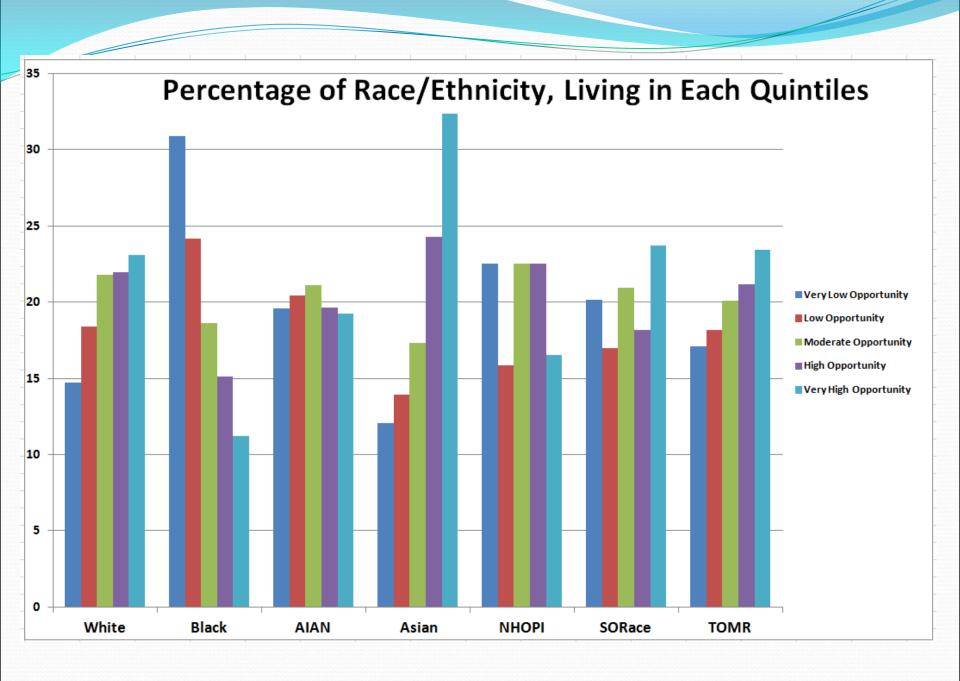

VARNAME	VARIABLE	DEFINITION *
Neighbors	10.0	
ResidualSquares	29.3	
EffectiveNumber	462.5	
Sigma	0.30	
AICc	1102.7	
R2	0.83	
R2Adjusted	0.59	
Dependent Variable	0	DFLE
Explanatory Variable	1	HOI


Note: DFLE - Disability Free Life Expectancy (Healthy Life) HOI - Health Opportunity Index (composite Index)

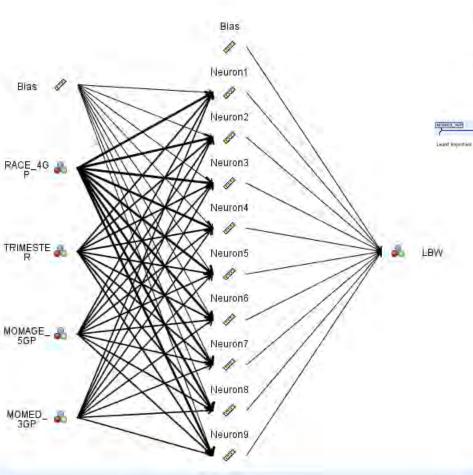
Policy Perspective Action Matters - HPTAs

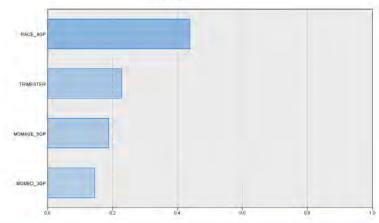

Virginia


Health Opportunity Index (HOI)



Infant Mortality per 1,000 Live Births





Predictive Analytics

Predictive Analytics for Low Birth Weight (Low HOI)

Network

Predictor Importance Target: LBW

reported (MacCappe

MOMED_3GP RACE_4GP
Least Important Most Important

Predictor Importance Target: LBW **Predictive Analytics for Low Birth** MOMAGE_SOP Weight (High HOI) Network MOMED_30F RACE_4GP Bias TRIMESTER Neuron1 Least Important Most Important MOMAGE_ 5GP Neuron2 MOMED. 3GP Neuron3 Neuron4 TRIMESTE & Neuron5 TRIMESTER MOMAGE 5GP

Least Important Most Important

Thank you!!

Rexford Anson-Dwamena

Rexford.Dwamena@vdh.virginia.gov

Justin Crow, MPA

Justin.crow@vdh.virginia.gov

Anna Riggan

Anna.Riggan@vdh.virginia.gov

Brendan Noggle

Brendan.Noggle@vdh.virginia.gov

HOI Technical
Workgroup
Graham Truelove
Joseph Grubbs
Brittany Cox
Dr. McFadden

Special Thanks to
Dr. Derek Chapman for
his constructive
suggestions